Discovering new bioactive molecules from microbial sources
نویسندگان
چکیده
There is an increased need for new drug leads to treat diseases in humans, animals and plants. A dramatic example is represented by the need for novel and more effective antibiotics to combat multidrug-resistant microbial pathogens. Natural products represent a major source of approved drugs and still play an important role in supplying chemical diversity, despite a decreased interest by large pharmaceutical companies. Novel approaches must be implemented to decrease the chances of rediscovering the tens of thousands of known natural products. In this review, we present an overview of natural product screening, focusing particularly on microbial products. Different approaches can be implemented to increase the probability of finding new bioactive molecules. We thus present the rationale and selected examples of the use of hypersensitive assays; of accessing unexplored microorganisms, including the metagenome; and of genome mining. We then focus our attention on the technology platform that we are currently using, consisting of approximately 70,000 microbial strains, mostly actinomycetes and filamentous fungi, and discuss about high-quality screening in the search for bioactive molecules. Finally, two case studies are discussed, including the spark that arose interest in the compound: in the case of orthoformimycin, the novel mechanism of action predicted a novel structural class; in the case of NAI-112, structural similarity pointed out to a possible in vivo activity. Both predictions were then experimentally confirmed.
منابع مشابه
Diversity and Bioactivity of Cultivable Animal Fecal Actinobacteria
Microbial symbionts play important roles in food digestion and absorption, immunity, pathogens resistance, and health maintaining of their hosts by co-evolution. To provide new sources for discovering new leader compounds of drugs, the diversity and bioactivities of cultivable actinobacteria from animal feces have been studied. 31 species of animal fecal samples were collected from Yunnan Wild ...
متن کاملReview Paper-marine Microbial Bioactive Compounds
Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplore...
متن کاملInformatic analysis reveals Legionella as a source of novel natural products
Microbial natural products are a crucial source of bioactive molecules and unique chemical scaffolds. Despite their importance, rediscovery of known natural products from established productive microbes has led to declining interest, even while emergent genomic data suggest that the majority of microbial natural products remain to be discovered. Now, new sources of microbial natural products mu...
متن کاملBiodiversity in production of antibiotics and other bioactive compounds.
Microbes continue to play a highly considerable role in the drug discovery and development process. Nevertheless, the number of new chemical entities (NCEs) of microbial origin that has been approved by the Food and Drug Administration (FDA) has been reduced in the past decade. This scarcity can be partly attributed to the redundancy in the discovered molecules from microbial isolates, which ar...
متن کاملQSAR-assisted virtual screening of lead-like molecules from marine and microbial natural sources for antitumor and antibiotic drug discovery.
A Quantitative Structure-Activity Relationship (QSAR) approach for classification was used for the prediction of compounds as active/inactive relatively to overall biological activity, antitumor and antibiotic activities using a data set of 1746 compounds from PubChem with empirical CDK descriptors and semi-empirical quantum-chemical descriptors. A data set of 183 active pharmaceutical ingredie...
متن کامل